Olá, Visitante. Por favor entre ou registe-se se ainda não for membro.

Entrar com nome de utilizador, password e duração da sessão
 

Autor Tópico: Porque e' que nos EUA os arabes nao sao uns falhados como na Europa ?  (Lida 24430 vezes)

D. Antunes

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 5286
    • Ver Perfil
Três ou cinco (desde o século XVI, na tua citação), não me parece pouco. Mas não é isso o relevante Lark.

O que é relevante é que a expressão raça era utilizada para a espécie humana antes de existiram estudos genéticos.
Depois, quando surgiram os estudos genéticos, alguém disse: a diferença entre as raças de cães é de 12, entre "raças" de humanos é de 7, vamos por o limite (de modo totalmente arbitrário) em 10 de modo a não existirem raças humanas.

A escolha foi totalmente arbitrária. Diria até que, a ter-se escolhido um limite, deveria ter sido escolhido um consistente com o uso corrente da palavra. Mas seja qual fosse, seria sempre um limite totalmente arbitrário.

Nota: estes números foram escolhidos de modo totalmente não científico. Apenas quero dizer que a diferença nos cães é A, nos humanos é B e que o limite foi arbitrariamente estabelecido como X, sendo que A>B o que permitiu escolher um X tal que A>X>B. Com o Lark temos que ter cuidado nos argumentos.

com o lark ficamos sempre a discutir a semantica mas nunca a substancia, eh algo recorrente

eu só estou a pedir humildemente um linkezinho para uma publicação ou um site ou qualquer coisinha científica que use o conceito ou a palavra raça.
não estou propriamente a pedir a lua.

L

Já li isso há muitos anos quando estudei genética. Não vi na net. Teria que pesquizar.

eu já pesquisei.tens aí muito material.

L

Lê isto:
Between-group genetics
In 1972, Richard Lewontin performed a FST statistical analysis using 17 markers (including blood-group proteins). He found that the majority of genetic differences between humans (85.4 percent) were found within a population, 8.3 percent were found between populations within a race and 6.3 percent were found to differentiate races (Caucasian, African, Mongoloid, South Asian Aborigines, Amerinds, Oceanians, and Australian Aborigines in his study). Since then, other analyses have found FST values of 6–10 percent between continental human groups, 5–15 percent between different populations on the same continent and 75–85 percent within populations.[24][25][26][27][28]

While acknowledging Lewontin's observation that humans are genetically homogeneous, A. W. F. Edwards in his 2003 paper "Human Genetic Diversity: Lewontin's Fallacy" argued that information distinguishing populations from each other is hidden in the correlation structure of allele frequencies, making it possible to classify individuals using mathematical techniques. Edwards argued that even if the probability of misclassifying an individual based on a single genetic marker is as high as 30 percent (as Lewontin reported in 1972), the misclassification probability nears zero if enough genetic markers are studied simultaneously. Edwards saw Lewontin's argument as based on a political stance, denying biological differences to argue for social equality.[29]

In The Ancestor's Tale Richard Dawkins devotes a chapter to the subject of race and genetics. After an extensive discussion of race and how the term is not well defined, Dawkins turns to the genetics of race. Dawkins describes the relatively low genetic variation between races, and geneticists conclusion that race is not an important aspect of a person. These conclusions echo those of Lewontin, and Dawkins characterizes this view as scientific orthodoxy. However, Dawkins felt that reasonable genetic conclusions had been tainted by Lewontin's politics. Dawkins accepted Lewontin's position that our perception of relatively large differences between human races and subgroups, as compared to the variation within these groups, is a biased perception and that human races and populations are remarkably similar to each other, with the largest part by far of human variation being accounted for by the differences between individuals. Dawkins' also agreed with Lewontin that racial classification had no social value, and was in fact destructive. Together with Edwards, Dawkins disagreed with Lewontin that this means race is of "virtually no genetic or taxonomic significance" and summarized Edwards' point that however small the racial partition of the total variation may be, if such racial characteristics as there are highly correlated with other racial characteristics, they are by definition informative, and therefore of taxonomic significance. Dawkins went on to concludes that racial classification informs us about no more than the traits common used to classify race: the superficial, external traits like eye shape and skin color.[30]

While acknowledging that FST remains useful, a number of scientists have written about other approaches to characterizing human genetic variation.[31][32][33] Long & Kittles (2009) stated that FST failed to identify important variation and that when the analysis includes only humans, FST = 0.119, but adding chimpanzees increases it only to FST = 0.183.[31] Mountain & Risch (2004) argued that an FST estimate of 0.10-0.15 does not rule out a genetic basis for phenotypic differences between groups and that a low FST estimate implies little about the degree to which genes contribute to between-group differences.[32] Pearse & Crandall 2004 wrote that FST figures cannot distinguish between a situation of high migration between populations with a long divergence time, and one of a relatively recent shared history but no ongoing gene flow.[33]
“Price is what you pay. Value is what you get.”
“In the short run the market is a voting machine. In the long run, it’s a weighting machine."
Warren Buffett

“O bom senso é a coisa do mundo mais bem distribuída: todos pensamos tê-lo em tal medida que até os mais difíceis de contentar nas outras coisas não costumam desejar mais bom senso do que aquele que têm."
René Descartes

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They further argue that race is a social construction with no scientific definition. Thus, studies of the relationship between race and other constructs may serve social ends but cannot serve scientific ends. No gene has yet been conclusively linked to intelligence, so attempts to provide a compelling genetic link of race to intelligence are not feasible at this time. The authors also show that heritability, a behaviorgenetic concept, is inadequate in regard to providing such a link.

fonte


Qual a novidade? É óbvio que há papers assim, principalmente em ciências sociais, onde até um monte de gibberish politicamente correcto é publicado ...

Mas repara, neste momento a utilização do QI e derivados é tão extensa, por funcionar, que cientificamente a única forma que há para "abatê-lo" é propor algo que funcione melhor (isto não parece estar a entrar, porquê, Lark?).

Ou seja, essas refutações são uma baboseira sem sentido. É como alguém a berrar contra a terra redonda ou contra Newton. Nesse ponto já só há uma alternativa: mostrar uma teoria melhor. Ciência não é falar mal de teorias, Lark. E tu só reproduziste esse lixo devido a confirmation bias.

(e negar isto tudo também não é surpreendente -- certamente que restaram heliocêntricos durante décadas ou séculos)
« Última modificação: 2015-09-08 01:09:51 por Incognitus »
"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
Changing the paradigm from 'race' to human genome variation

Knowledge from the Human Genome Project and research on human genome variation increasingly challenges the applicability of the term 'race' to human population groups, raising questions about the validity of inferences made about 'race' in the biomedical and scientific literature. Despite the acknowledged contradictions in contemporary science, population-based genetic variation is continually used to explain differences in health between 'racial' and 'ethnic' groups. In this commentary we posit that resolution of apparent paradoxes in relating biology to 'race' and genetics requires thinking 'outside of the box'.

Introduction to the state of the science
Knowledge gained from the Human Genome Project and research on human genome variation is forcing a paradigm shift in thinking about the construct of 'race'1, 2, 3, 4, 5, 6, 7, 8, much like the process described by Thomas Kuhn in his renowned book, The Structure of Scientific Revolutions9. Kuhn describes the paradigm shift in science as occurring when anomalous, scientific results cannot be explained by inadequate methods. With an accumulation of such anomalies, scientists must begin to consider that the paradigm or model of reality under which the hypotheses are tested has shifted and is no longer valid. Today, scientists are faced with this situation in genomics, where existing biological models or paradigms of 'racial' and 'ethnic' categorizations cannot accommodate the uniqueness of the individual and universality of humankind that is evident in new knowledge emerging from human genome sequence variation research and molecular anthropological research. The paradigms of human identity based on 'races' as biological constructs are being questioned in light of the preponderance of data on human genome sequence variation10, 11, 12, 13 and reflect the need for a new explanatory framework and vision of humankind with different fundamental assumptions about biological groups that can accommodate new knowledge from a new generation of research.

Discourse on the validity of 'racial' categorization in humans is certainly not new and will perhaps continue for generations to come, taking on various forms as new scientific and nonscientific knowledge emerges. Shifts have occurred over time from a purely anthropological or biological debate14, 15, 16, 17, 18, 19, 20, 21 to conversations about numerous psychosocial, societal, ethical and legal ramifications22, 23, 24, 25, indicative of the undeniable applicability of the topic of 'race' to virtually every aspect of human existence.

This commentary describes the intellectual climate under which new information from human genome research is introduced into twenty-first-century biomedical science and society, new information that forces a more integrative construct of human biology and disease. The discordance between 'race' and human genome variation sets the stage for an analysis of the state of the science on human genome variation and 'race' and the relationship between genome variation and population differences in health and disease. The paper also provides a brief background for, and overview of, this Supplement to Nature Genetics.

Genetics research and health disparities
Recent studies by leading human genome researchers report differences between African and non-African population groups in the structure of sequence variation in the human genome26, 28, rekindling in the scientific literature, as well as in the public media, old controversies over the biological relevance of 'race' in medicine. Human genome−based knowledge challenges science and society to address questions on the validity of 'racial' or 'ethnic' categories for biomedical and genetics research. It also raises questions on the public health importance of human genome variation within and between different racial or ethnic groups, thus making it relevant to the categorization of human identity in health disparities research, training and community partnership.

Research focusing on health disparities with respect to common complex diseases (such as diabetes, cardiovascular disease, and some cancers) in 'racial' or 'ethnic' groups has highlighted almost exclusively social, cultural, environmental and economic causal factors while disregarding potential genetic factors. This may be attributed to several causes, ranging from a general perception that genetics plays a minimal role, to the limitations of technology prior to the human genome project in studying the genetics of common complex diseases. The introduction of human genome technology into investigations of health disparities is controversial and demands critical examination28, 29.

Human genome knowledge has been likened to a "double-edged sword"28, 29, with power to exacerbate health disparities if (i) its benefits are realized only by the most affluent members of society; (ii) its research is carried out and applied mainly toward the medical treatment of rare diseases; (iii) its message is distorted into impressions of group inferiority; (iv) its information is used to discriminate and stigmatize; and (v) its power is used to further the image of a single physical ideal. Conversely, and in line with the position of the National Human Genome Center (NHGC), this same knowledge can be effectively used to eliminate health disparities if (i) its applications are focused on common complex diseases in the least healthy groups in society; (ii) its study provides valuable insights into the causes of health disparities; (iii) its benefits are shared with vulnerable population groups; and (iv) its message is understood as valuing human variation as an instrument of self-discovery30.

Translational genomics at the NHGC
With a mission to "explore the science of and teach the knowledge about DNA sequence variation and its interaction with the environment in the causality, prevention, and treatment of diseases common in African Americans and other African Diaspora populations", the NHGC at Howard University was formally announced on 1 May 2001 and dedicated to the engagement of African Americans and other people of African ancestry into the mainstream of human genome research. As the only research center of its kind in a historically black academic center, the NHGC is thought to be crucial to broadening the base and active participation of African Americans and other grossly under-represented African Diaspora populations in the human genome arena. With a structure that includes genetic epidemiology, molecular genetics, bioethics, statistical genetics and bioinformatics, the NHGC was formed to address the biomedical, ethical, legal and social issues raised by the wealth of knowledge unleashed by the sequencing of the human genome.

As previously indicated, much of the current literature on genetics and health disparities emphasizes the potential dangers of connecting genetics with disparities, and relatively little research has been directed towards the potential of genomics to further understand health disparities in ways that can accomplish the US public health objectives of Healthy People 2010: a long and healthy life for all and the elimination of health disparities28, 29. Conditions are prime for the application of knowledge gained from research on the structure of DNA sequence variation in African and African Diaspora populations to probe the influence of gene-environment interactions in race- and ethnicity-based health disparities. With plans underway for the Translational Genomics Research in the African Diaspora initiative, the NHGC is positioned to lead the US and the global community with a large-scale, interdisciplinary project for human genome research in the African Diaspora. Translational Genomics Research in the African Diaspora will be a population-based resource for translational genomics in clinical research, which capitalizes on the evolutionary and migration history of Africans and the African Diaspora, and a resource for dissecting the contributions of gene-environment interactions (environment broadly defined to include psychosocial, cultural and other subjective factors) to disease susceptibility and response to medicines.

The relevance of the topic 'genetics and race' to the mission of the NHGC and to improved understanding of the relationships among gene-environment interactions, complex traits and health disparities between racial or ethnic groups cannot be overstated. Critics challenge the NHGC research focus on African Americans and other African Diaspora populations. Assertions that the center perpetrates race-based science and medicine have resulted from different perspectives on population-based genetic studies. The NHGC posits that the term 'race', as applied to humans, is incorrectly used. Traditional 'racial' designations in humans are not bounded, discrete categories but are fluid, socially defined constructs that have some poorly understood correlations with various biological elements and health outcomes. It is our intent that the work of the center will increase understanding of the complex interaction of genes and environment as well as cultural and other psychosocial factors that contribute to common complex diseases.

Rationale for the NHGC meeting
In an attempt to advance the dialog among persons from various academic disciplines, professions, social strata and racial or ethnic groups, the NHGC launched a series of meetings on the conceptualization of genetic variation as 'race'. The series is intended to bring together a diverse group of individuals over time, charged with confronting the perplexing issues from various vantage points through open and scholarly dialogue and with generating tangible outcomes.

The scientific focus of the inaugural meeting in the Human Genome Variation and "Race" series is by no means arbitrary. A substantial portion of the ongoing dialog on this issue has been devoted to the glaring medical and societal implications, often glossing over the ambiguous science that underlies many of these implications. Until sound conclusions of the science are clearly communicated, society as a whole will be severely limited in its capacity to effectively address any of the ramifications. Undoubtedly, such clarity will require new approaches to methodology, training, policy and priorities. The desire of the NHGC is that the discourse initiated at the inaugural meeting and continued in this journal issue will enlighten the community about the scientific aspects of the interface between race and genetics.

Overview of this Supplement
The papers in this Supplement are Commentaries and Perspectives from selected noted scientists and scholars in the fields of biology, human genetics, anthropology, epidemiology and bioethics, all of whom were invited presenters at the Howard University Human Genome Variation and "Race" meeting. This Supplement builds on and extends the discourse on the state of the science on genetics, race and health.

Mildred Cho and Pamela Sankar set the stage by highlighting the connection between genetics research and the ethical, legal and social implications of the inevitable scientific outcomes. They argue for the involvement of genetics researchers not only in the generation of knowledge about human genome in general and genetic variation research in particular, but also in the use and application of that knowledge, especially nonmedical uses such as forensic genetics.

Francis Collins, director of the National Human Genome Research Institute at the US National Institutes of Health, provides a general overview of, and model for, contextualizing existing knowledge about the interactions among race, ethnicity, genetics and health. He also proposes an agenda for additional research that is needed to advance understanding and application of these interactions and describes related efforts supported or led by the National Human Genome Research Institute.

The paper by Shomarka Keita and colleagues at the NHGC uses a historical framework in putting forward the NHGC's position on the meaning and application of the term 'race'. The primary assertion by these authors is that biological variation in modern humans does not structure into phylogenetic subspecies ('races'). In addition, they point out that the controversies engendered by the term 'race' result primarily from problems with semantics due to inconsistency in the use and definition of the word.

In addressing the issue of whether populations cluster according to the popular concept of race, Sarah Tishkoff and Kenneth Kidd show that racial classifications do not adequately describe the distribution of genetic variation in humans. While acknowledging the clustering of populations in broad geographic regions, they contend that the broad global pattern is indicative of genetic drift associated with the African origin, followed by expansion out of Africa and across the rest of the globe. They further suggest that biomedical studies can benefit from knowledge of individual ancestry, as various factors may lead to geographical restriction of disease-associated genes.

The perspective by Lynn Jorde and Stephen Wooding emphasizes the geographic configuration of genetic variation in line with historical patterns of gene flow and genetic drift. The authors show that the distribution of genetic variation across populations is continuous and overlapping, and that observed correlations with some traditional concepts of race are limited. They also provide a general overview of patterns of human variation at the population and individual levels. They caution that although ancestry (or 'race') may prove useful in biomedicine, more accurate and beneficial information may be obtained through direct assessment of disease-related genetic variation.

Sarah Tate and David Goldstein examine the potential for pharmacogenetics to exacerbate disparities in both health and health care if measures are not instituted to ensure that the development and dispensing of medicines are inclusive. Accordingly, they call for pharmacogenetic research processes that take into account the range of ethnic and genetic diversity within and between human populations, as well as for increased participation of healthy volunteers in such studies.

Charles Rotimi presents an insider's view of the present and potential challenges related to the retention and use of racial, ethnic or population identifiers in large-scale genomic projects, such as the International Human Haplotype Map (HapMap) project. He reiterates the general consensus that racial classifications are imprecise and fluid, often correlating spuriously with genetic variation across populations. Consequently, he advocates more careful consideration of the scientific, clinical, social and ethical ramifications inherent in the design and implementation of 'race-based' population studies and the development of 'race-based' pharmacogenomic interventions.

In their assessment of scientific data on human genotypic and phenotypic variation generated over the last 35 years, Joanna Mountain and Neil Risch found that despite technological advances resulting in a large volume of new data, progress has been relatively slow towards elucidation of the genetic basis for within- or between-group variation, particularly for complex traits and common diseases. They attribute this to intrinsic difficulty in teasing out the associated genetic influences, as well as to the important role of nongenetic factors. They conclude that given the ongoing challenges in understanding on the role of genes in between-group variation, generalizations regarding genetic contributions to observed differences are unwarranted and may exacerbate group disparities.

Esteban Parra, Rick Kittles and Mark Shriver present results of their study designed to evaluate correlations between skin pigmentation and ancestry. They observed substantial but variable strengths of correlation between pigmentation and ancestry in each of the five populations studied, attributing their observations to varying degrees of admixture stratification among populations or differences in the levels of pigmentation between the parental populations and the number of genes involved. They recommend caution when using pigmentation as a 'marker' of ancestry or when extrapolating the results from on population to other admixed populations.

Conclusion
Reflecting on this compilation of articles from the distinguished group of scientists invited to contribute to this special issue of Nature Genetics, it is evident that much effort has already been expended in attempting to achieve clarity on the complex relationships among race, genetics and health. Based on information presented here, there seems to be consensus that 'race', whether imposed or self-identified, is a weak surrogate for various genetic and nongenetic factors in correlations with health status. We are at the beginning of a new era in molecular medicine. It remains to be determined how increasing knowledge of genetic variation in populations will change prevailing paradigms of human health and identity.

fonte

e pronto. basicamente é isto.

L
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Zel

  • Visitante
e os arabes, nao sao falhados nos EUA porque ? e sao na europa porque? vamos voltar ao tema por favor.
« Última modificação: 2015-09-08 01:19:19 por Neo-Liberal »

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
LARK:

O conceito de raça existe dentro de uma espécie.

Dentro de cada espécie existem populações que têm variações genéticas entre si. A
A expressão raça aplicada ao Homo sapiens existe há muitos séculos (é uma expressão consagrada pelo uso).


nope. existe desde os tempo coloniais. sec xvii em diante.

Mais recentemente, foi possível ver qual a % de variação genética entre populações. Alguns cientistas puseram o limite arbitrário acima da diferença existente entre populações humanas. Usando esse limite arbitrário, passou a dizer-se que não existem raças na nossa espécie. Claro que esse limite não foi escolhido inocentemente...

De qualquer maneira, existem diferenças fenotípicas e genotípicas entre seres humanos que permitem dizer que alguém teve antepassados numa determinada região do planeta.

outra vez. tanto quanto eu saiba os geneticistas não usam o termo nem o conceito raça.
é uma conspiração?

L

Lark, chama-lhe o que quiseres, então. Estudam-se medicamentos com aplicações diferentes consoante a raça e tudo. Os formulários de tudo quanto é coisa pedem a raça. E estudos que nunca mais acabam referem-na. E os laboratórios da polícia com um bocado de DNA dizem-te a raça do suspeito.

Não que o conceito exista, mas pronto, é muito usado para uma coisa que não existe. E funciona e tudo, dá jeito saber a raça do suspeito para a polícia, ou para o médico.

----------

Lark, também podes trocar a palavra "ciência" por uma expressão tipo "o que funciona e é repetível". Não deixes que as palavras te assustem. O QI funciona e a raça também, e isso é lixado para a tua agenda.
« Última modificação: 2015-09-08 01:25:50 por Incognitus »
"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
o que assistimos hoje foi um triste espectaculo, um homem adulto que se diz racional a lutar contra o conhecimento cientifico moderno em nome da sua religiao, parece a idade das trevas all over again

todos nos temos um larkinho irracional dentro de nos, nao vale a pena julgar o rapaz. temos e' de tentar nao ser como ele. boa noite larkinho. boas leituras.

boa note neozinho. tens aí muito por onde te entreter antes de ir para acama.
inclusive um paper a afirmar que a conexão raça/QI é completo BS. não existe tal coisa como raça e não há nenhum gene identificável que traduza a inteligência.

sempre a considerar-te,
urso lark

Um pedaço inútil de conhecimento. O conceito de QI funciona para n coisas diferentes, se não funcionasse era abandonado. Quando houver algo melhor, o QI logo é esquecido. Até lá é de burrice extrema andar a dizer que não presta sem meter na mesa algo melhor. Não é assim que a ciência funciona.

"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
é muito comprido.
mas não é nada chato.
vale muito a pena ler.

The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research
Race, Ethnicity, and Genetics Working Group*

The global dispersal of anatomically modern humans over the past 100,000 years has produced patterns of phenotypic variation that have exerted—and continue to exert—powerful influences on the lives of individuals and the experiences of groups. The recency of our common ancestry and continued gene flow among populations have resulted in less genetic differentiation among geographically distributed human populations than is observed in many other mammalian species. Nevertheless, differences in appearance have contributed to the development of ideas about “race” and “ethnicity” that often include the belief that significant inherited differences distinguish humans. The use of racial, ethnic, and ancestral categories in genetics research can imply that group differences arise directly through differing allele frequencies, with little influence from socially mediated mechanisms. At the same time, careful investigations of the biological, environmental, social, and psychological attributes associated with these categories will be an essential component of cross-disciplinary research into the origins, prevention, and treatment of common diseases, including those diseases that differ in prevalence among groups.

Introduction
Human genetics research is generating unprecedented amounts of data about the genetic differences among individuals and groups. Investigation of these differences will transform our understanding of the origins and nature of human diseases (Collins et al. 2003).

Research into human genetic differences also has the potential to generate great controversy. In the past, concepts drawn from genetics have been used—both by geneticists and by individuals outside the field—to justify and perpetuate racial and ethnic discrimination (Kevles 1985; Provine 1986). The belief that racial and ethnic groups have substantial, well-demarcated biological differences and that these differences are important has contributed to many of the great atrocities of the 20th century and continues to shape personal interactions and social institutions (Mosse 1985; Shipler 1997). Because of the history of misuse of genetics ideas, geneticists have a special responsibility to examine carefully their use of racial and ethnic categories in their research. Investigations that fail to recognize and acknowledge the full range of mechanisms through which designations of race, ethnicity, and ancestry can correlate with personal traits and health outcomes threaten to reinforce widely held stereotypes. Yet genetics research also has the potential, by delineating the complex origins of traits and the close biological affinities between human groups, to help dispel these stereotypes.

The sequencing of the human genome (International Human Genome Sequencing Consortium 2001; Venter et al. 2001) and the ongoing international effort to catalog common haplotypes in several populations (International HapMap Consortium 2003) make this an opportune time to examine the complex relationships between genetics research and the categories of race, ethnicity, and ancestry. Although such a review inevitably draws on very different academic disciplines and literatures, a cross-disciplinary conversation is essential for reconciliation of the promise of genetics research with the historical and potential abuses of ideas drawn from genetics. This review summarizes what is known about patterns of human genetic variation; the historical development of widely held conceptions about race, ethnicity, and ancestry; and the interactions between these conceptions and human genetics research.

The Origins, Patterns, and Physical Manifestations of Human Genetic Variation
The Origins of Modern Humans

Information about the history of our species comes from two main sources: the paleoanthropological record and historical inferences based on current genetic differences observed in humans. Although both sources of information are fragmentary, they have been converging in recent years on the same general story.

The existing fossil evidence suggests that anatomically modern humans evolved in Africa, within the last ∼200,000 years, from a pre-existing population of humans (Klein 1999). Although it is not easy to define “anatomically modern” in a way that encompasses all living humans and excludes all archaic humans (Lieberman et al. 2002), the generally agreed-upon physical characteristics of anatomical modernity include a high rounded skull, facial retraction, and a light and gracile, as opposed to heavy and robust, skeleton (Lahr 1996). Early fossils with these characteristics have been found in eastern Africa and have been dated to ∼160,000–200,000 years ago (White et al. 2003; McDougall et al. 2005). At that time, the population of anatomically modern humans appears to have been small and localized (Harpending et al. 1998). Much larger populations of archaic humans lived elsewhere in the Old World, including the Neandertals in Europe and an earlier species of humans, Homo erectus, in Asia (Swisher et al. 1994).

Fossils of the earliest anatomically modern humans found outside Africa are from two sites in the Middle East and date to a period of relative global warmth, ∼100,000 years ago, though this region was reinhabited by Neandertals in later millennia as the climate in the northern hemisphere again cooled (Lahr and Foley 1998). Groups of anatomically modern humans appear to have moved outside Africa permanently sometime >60,000 years ago. One of the earliest modern skeletons found outside Africa is from Australia and has been dated to ∼42,000 years ago (Bowler et al. 2003), although studies of environmental changes in Australia argue for the presence of modern humans in Australia >55,000 years ago (Miller et al. 1999). To date, the earliest anatomically modern skeleton discovered from Europe comes from the Carpathian Mountains of Romania and is dated to 34,000–36,000 years ago (Trinkaus et al. 2003).

Existing data on human genetic variation support and extend conclusions based on the fossil evidence. African populations exhibit greater genetic diversity than do populations in the rest of the world, implying that humans appeared first in Africa and later colonized Eurasia and the Americas (Tishkoff and Williams 2002; Yu et al. 2002; Tishkoff and Verrelli 2003). The genetic variation seen outside Africa is generally a subset of the variation within Africa, a pattern that would be produced if the migrants from Africa were limited in number and carried just part of African genetic variability with them (Cavalli-Sforza and Feldman 2003). Patterns of genetic variation suggest an earlier population expansion in Africa followed by a subsequent expansion in non-African populations, and the dates calculated for the expansions generally coincide with the archaeological record (Jorde et al. 1998).

Aspects of the relationship between anatomically modern and archaic humans remain contentious. Studies of mtDNA (Ingman et al. 2000), the Y chromosome (Underhill et al. 2000), portions of the X chromosome (Kaessmann et al. 1999), and many (though not all) autosomal regions (Harpending and Rogers 2000) support the “Out of Africa” account of human history, in which anatomically modern humans appeared first in eastern Africa and then migrated throughout Africa and into the rest of the world, with little or no interbreeding between modern humans and the archaic populations they gradually replaced (Tishkoff et al. 2000; Stringer 2002). However, several groups of researchers cite fossil and genetic evidence to argue for a more complex account. They contend that humans bearing modern traits emerged several times from Africa, over an extended period, and mixed with archaic humans in various parts of the world (Hawks et al. 2000; Eswaran 2002; Templeton 2002; Ziętkiewicz et al. 2003). As a result, they say, autosomal DNA from archaic human populations living outside Africa persists in modern populations, and modern populations in various parts of the world still bear some physical resemblance to the archaic populations that inhabited those regions (Wolpoff et al. 2001).

However, distinguishing possible contributions to the gene pool of modern humans from archaic humans outside Africa is difficult, especially since many autosomal loci coalesce at times preceding the separation of archaic human populations (Pääbo 2003). In addition, studies of mtDNA from archaic and modern humans and extant Y chromosomes suggest that any surviving genetic contributions of archaic humans outside Africa must be small, if they exist at all (Krings et al. 1997; Nordborg 1998; Takahata et al. 2001; Serre et al. 2004). The observation that most genes studied to date coalesce in African populations points toward the importance of Africa as the source of most modern genetic variation, perhaps with some subdivision in the ancestral African population (Satta and Takahata 2002). Sequence data for hundreds of loci from widely distributed worldwide populations eventually may clarify the population processes associated with the appearance of anatomically modern humans (Wall 2000), as well as the amount of gene flow among modern humans since then.

The Distribution of Variation

A thorough description of the differences in patterns of genetic variation between humans and other species awaits additional genetic studies of human populations and nonhuman species. But the data gathered to date suggest that human variation exhibits several distinctive characteristics. First, compared with many other mammalian species, humans are genetically less diverse—a counterintuitive finding, given our large population and worldwide distribution (Li and Sadler 1991; Kaessmann et al. 2001). For example, the chimpanzee subspecies living just in central and western Africa have higher levels of diversity than do humans (Ebersberger et al. 2002; Yu et al. 2003; Fischer et al. 2004).

The distribution of variants within and among human populations also differs from that of many other species. The details of this distribution are impossible to describe succinctly because of the difficulty of defining a “population,” the clinal nature of variation, and heterogeneity across the genome (Long and Kittles 2003). In general, however, 5%–15% of genetic variation occurs between large groups living on different continents, with the remaining majority of the variation occurring within such groups (Lewontin 1972; Jorde et al. 2000a; Hinds et al. 2005). This distribution of genetic variation differs from the pattern seen in many other mammalian species, for which existing data suggest greater differentiation between groups (Templeton 1998; Kittles and Weiss 2003).

Our history as a species also has left genetic signals in regional populations. For example, in addition to having higher levels of genetic diversity, populations in Africa tend to have lower amounts of linkage disequilibrium than do populations outside Africa, partly because of the larger size of human populations in Africa over the course of human history and partly because the number of modern humans who left Africa to colonize the rest of the world appears to have been relatively low (Gabriel et al. 2002). In contrast, populations that have undergone dramatic size reductions or rapid expansions in the past and populations formed by the mixture of previously separate ancestral groups can have unusually high levels of linkage disequilibrium (Nordborg and Tavare 2002).

Many other geographic, climatic, and historical factors have contributed to the patterns of human genetic variation seen in the world today. For example, population processes associated with colonization, periods of geographic isolation, socially reinforced endogamy, and natural selection all have affected allele frequencies in certain populations (Jorde et al. 2000b; Bamshad and Wooding 2003). In general, however, the recency of our common ancestry and continual gene flow among human groups have limited genetic differentiation in our species.

Substructure in the Human Population

Although the genetic differences among human groups are relatively small, these differences nevertheless can be used to situate many individuals within broad, geographically based groupings. For example, computer analyses of hundreds of polymorphic loci sampled in globally distributed populations have revealed the existence of genetic clustering that roughly is associated with groups that historically have occupied large continental and subcontinental regions (Rosenberg et al. 2002; Bamshad et al. 2003).

Some commentators have argued that these patterns of variation provide a biological justification for the use of traditional racial categories. They argue that the continental clusterings correspond roughly with the division of human beings into sub-Saharan Africans; Europeans, western Asians, and northern Africans; eastern Asians; Polynesians and other inhabitants of Oceania; and Native Americans (Risch et al. 2002). Other observers disagree, saying that the same data undercut traditional notions of racial groups (King and Motulsky 2002; Calafell 2003; Tishkoff and Kidd 2004). They point out, for example, that major populations considered races or subgroups within races do not necessarily form their own clusters. Thus, samples taken from India and Pakistan affiliate with Europeans or eastern Asians rather than separating into a distinct cluster. However, samples from the Kalash, a small population living in northwestern Pakistan, form their own cluster on a level comparable with those of the major continental regions (Rosenberg et al. 2002).

Sampling design can have a critical influence on the results of such studies. Studies of genetic clustering often have relied on samples taken from widely separated and socially defined populations. When samples were analyzed from individuals who were more evenly distributed geographically, clustering was far less evident (Serre and Pääbo 2004). Furthermore, because human genetic variation is clinal, many individuals affiliate with two or more continental groups. Thus, the genetically based “biogeographical ancestry” assigned to any given person generally will be broadly distributed and will be accompanied by sizable uncertainties (Pfaff et al. 2004).

In many parts of the world, groups have mixed in such a way that many individuals have relatively recent ancestors from widely separated regions. Although genetic analyses of large numbers of loci can produce estimates of the percentage of a person’s ancestors coming from various continental populations (Shriver et al. 2003; Bamshad et al. 2004), these estimates may assume a false distinctiveness of the parental populations, since human groups have exchanged mates from local to continental scales throughout history (Cavalli-Sforza et al. 1994; Hoerder 2002). Even with large numbers of markers, information for estimating admixture proportions of individuals or groups is limited, and estimates typically will have wide CIs (Pfaff et al. 2004).

Physical Variation in Humans

The distribution of many physical traits resembles the distribution of genetic variation within and between human populations (American Association of Physical Anthropologists 1996; Keita and Kittles 1997). For example, ∼90% of the variation in human head shapes occurs within every human group, and ∼10% separates groups, with a greater variability of head shape among individuals with recent African ancestors (Relethford 2002).

A prominent exception to the common distribution of physical characteristics within and among groups is skin color. Approximately 10% of the variance in skin color occurs within groups, and ∼90% occurs between groups (Relethford 2002). This distribution of skin color and its geographic patterning—with people whose ancestors lived predominantly near the equator having darker skin than those with ancestors who lived predominantly in higher latitudes—indicate that this attribute has been under strong selective pressure. Darker skin appears to be strongly selected for in equatorial regions to prevent sunburn, skin cancer, the photolysis of folate, and damage to sweat glands (Sturm et al. 2001; Rees 2003). A leading hypothesis for the selection of lighter skin in higher latitudes is that it enables the body to form greater amounts of vitamin D, which helps prevent rickets (Jablonski 2004). However, the vitamin D hypothesis is not universally accepted (Aoki 2002), and lighter skin in high latitudes may correspond simply to an absence of selection for dark skin (Harding et al. 2000).

Because skin color has been under strong selective pressure, similar skin colors can result from convergent adaptation rather than from genetic relatedness. Sub-Saharan Africans, tribal populations from southern India, and Australian Aborigines have similar skin pigmentation, but genetically they are no more similar than are other widely separated groups. Furthermore, in some parts of the world in which people from different regions have mixed extensively, the connection between skin color and ancestry has been substantially weakened (Parra et al. 2004). In Brazil, for example, skin color is not closely associated with the percentage of recent African ancestors a person has, as estimated from an analysis of genetic variants differing in frequency among continent groups (Parra et al. 2003).

Considerable speculation has surrounded the possible adaptive value of other physical features characteristic of groups, such as the constellation of facial features observed in many eastern and northeastern Asians (Guthrie 1996). However, any given physical characteristic generally is found in multiple groups (Lahr 1996), and demonstrating that environmental selective pressures shaped specific physical features will be difficult, since such features may have resulted from sexual selection for individuals with certain appearances or from genetic drift (Roseman 2004).

The Social Interpretation of Physical Variation
The Development of the “Ideology of Race”

Given our visual acuity and complex social relationships, humans presumably have always observed and speculated about the physical differences among individuals and groups. But different societies have attributed markedly different meanings to these distinctions. Classical civilizations from Rome to China tended to invest much more importance in family or tribal affiliations than in physical appearance (Dikötter 1992; Goldenberg 2003). Some Roman writers adhered to an environmental determinism in which climate could affect the appearance and character of groups (Isaac 2004). But in many ancient civilizations, individuals with widely varying physical appearances could become full members of a society by growing up within that society or by adopting the society’s cultural norms (Snowden 1983; Lewis 1990).

The English word “race” (possibly derived from the Spanish raza, meaning “breed” or “stock”), along with many of the ideas now associated with the term, were products of the European era of exploration (Smedley 1999). As Europeans encountered people from different parts of the world, they speculated about the physical, social, and cultural differences between human groups. The rise of the African slave trade, which gradually displaced an earlier trade in slaves from throughout the world, created a further incentive to categorize human groups to justify the barbarous treatment of African slaves (Meltzer 1993). Drawing on classical sources and on their own internal interactions—for example, the hostility between the English and Irish was a powerful influence on early thinking about the differences between people (Takaki 1993)—Europeans began to sort themselves and others into groups associated with physical appearance and with deeply ingrained behaviors and capacities. A set of “folk beliefs” took hold that linked inherited physical differences between groups to inherited intellectual, behavioral, and moral qualities (Banton 1977). Although similar ideas can be found in other cultures (Lewis 1990; Dikötter 1992), they appear not to have had as much influence on social structures as they did in Europe and the parts of the world colonized by Europeans.

In the 18th century, the differences between human groups became a focus of scientific investigation (Todorov 1993). Initially, scholars focused on cataloging and describing “The Natural Varieties of Mankind,” as Johann Friedrich Blumenbach entitled his 1775 text (which established the five major divisions of humans still reflected in some racial classifications). But as the science of anthropology took shape in the 19th century, European and American scientists increasingly sought explanations for the behavioral and cultural differences they attributed to groups (Stanton 1960). For example, they measured the shapes and sizes of skulls and related the results to group differences in intelligence or other attributes (Lieberman 2001). Both before and after the 1859 publication of On the Origins of Species, a debate raged in Europe over whether different human groups had the same origin or were the product of separate creations or evolutionary lineages (Wolpoff and Caspari 1997).

From the 17th through the 19th centuries, the merging of folk beliefs about group differences with scientific explanations of those differences produced what one scholar has called an “ideology of race” (Smedley 1999). According to this ideology, races are primordial, natural, enduring, and distinct. Some groups might be the result of mixture between formerly distinct populations, but careful study can distinguish the ancestral races that had combined to produce admixed groups.

The concept of race found wide application in many societies. The eugenics movement of the late 19th and early 20th centuries asserted as self-evident the biological inferiority of particular groups (Kevles 1985). In many parts of the world, the idea of race became a way of rigidly dividing groups by use of culture as well as physical appearances (Hannaford 1996). Campaigns of oppression and genocide often used supposed racial differences to motivate inhuman acts against others (Horowitz 2001).

The Incongruities of Racial Classifications

Even as the idea of “race” was becoming a powerful organizing principle in many societies, the shortcomings of the concept were apparent. In the Old World, the gradual transition in appearances from one group to adjacent groups emphasized that “one variety of mankind does so sensibly pass into the other, that you cannot mark out the limits between them,” as Blumenbach observed in his writings on human variation (Marks 1995, p. 54). In parts of the Americas, the situation was somewhat different. The immigrants to the New World came largely from widely separated regions of the Old World—western and northern Europe, western Africa, and, later, eastern Asia and southern Europe. In the Americas, the immigrant populations began to mix among themselves and with the indigenous inhabitants of the continent. In the United States, for example, most people who self-identify as African American have some European ancestors—in one analysis of genetic markers that have differing frequencies between continents, European ancestry ranged from an estimated 7% for a sample of Jamaicans to ∼23% for a sample of African Americans from New Orleans (Parra et al. 1998). Similarly, many people who identify as European American have some African or Native American ancestors, either through openly interracial marriages or through the gradual inclusion of people with mixed ancestry into the majority population. In a survey of college students who self-identified as “white” in a northeastern U.S. university, ∼30% were estimated to have <90% European ancestry (Shriver et al. 2003).

In the United States, social and legal conventions developed over time that forced individuals of mixed ancestry into simplified racial categories (Gossett 1997). An example is the “one-drop rule” implemented in some state laws that treated anyone with a single known African American ancestor as black (Davis 2001). The decennial censuses conducted since 1790 in the United States also created an incentive to establish racial categories and fit people into those categories (Nobles 2000). In other countries in the Americas where mixing among groups was more extensive, social categories have tended to be more numerous and fluid, with people moving into or out of categories on the basis of a combination of socioeconomic status, social class, ancestry, and appearance (Mörner 1967).

Efforts to sort the increasingly mixed population of the United States into discrete categories generated many difficulties (Spickard 1992). By the standards used in past censuses, many millions of children born in the United States have belonged to a different race than have one of their biological parents. Efforts to track mixing between groups led to a proliferation of categories (such as “mulatto” and “octoroon”) and “blood quantum” distinctions that became increasingly untethered from self-reported ancestry. A person’s racial identity can change over time, and self-ascribed race can differ from assigned race (Kressin et al. 2003). Until the 2000 census, Latinos were required to identify with a single race despite the long history of mixing in Latin America; partly as a result of the confusion generated by the distinction, 42% of Latino respondents in the 2000 census ignored the specified racial categories and checked “some other race” (Mays et al. 2003).

Ethnicity as a Way of Categorizing People

As the problems surrounding the word “race” became increasingly apparent during the 20th century, the word “ethnicity” was promoted as a way of characterizing the differences between groups (Huxley and Haddon 1936; Hutchinson and Smith 1996). Ethnicity typically emphasizes the cultural, socioeconomic, religious, and political qualities of human groups rather than their genetic ancestry. It may encompass language, diet, religion, dress, customs, kinship systems, or historical or territorial identity (Cornell and Hartmann 1998).

However, as a way of understanding human groups, ethnicity also suffers from several shortcomings. First, ascribing an ethnic identity to a group can imply a much greater degree of uniformity than is actually the case. In the United States, the ethnic group “Hispanic or Latino” contains such subgroups as Cuban Americans, Mexican Americans, Puerto Ricans, and recent immigrants from Central America (Hayes-Bautista and Chapa 1987). Combining these groups into a single category may serve useful bureaucratic or political ends but does not necessarily result in a better understanding of these groups.

Also, ethnicity, like race, is a malleable concept that can change dramatically in different times or circumstances (Waters 1990; Smelser et al. 2001). Ethnic groups may come into existence and then dissipate as a result of broad historical or social trends. Individuals might change ethnic groups over the course of their lives or identify with more than one group. A researcher, clinician, or government official might assign an ethnicity to an individual quite different from the one that person would acknowledge (Kressin et al. 2003).

Finally, despite attempts to distinguish “ethnicity” from “race,” the two terms often are used interchangeably (Oppenheimer 2001). Ethnic groups can share a belief in a common ancestral origin (Cornell and Hartmann 1998), which also can be a defining characteristic of a racial group. Furthermore, ethnic groups tend to promote marriage within the group, which creates an expectation of biological cohesion regardless of whether that cohesion existed in the past.

Ancestry as a Way of Categorizing People

An alternative to the use of racial or ethnic categories in genetics research is to categorize individuals in terms of ancestry. Ancestry may be defined geographically (e.g., Asian, sub-Saharan African, or northern European), geopolitically (e.g., Vietnamese, Zambian, or Norwegian), or culturally (e.g., Brahmin, Lemba, or Apache). The definition of ancestry may recognize a single predominant source or multiple sources. Ancestry can be ascribed to an individual by an observer, as was the case with the U.S. census prior to 1960; it can be identified by an individual from a list of possibilities or with use of terms drawn from that person’s experience; or it can be calculated from genetic data by use of loci with allele frequencies that differ geographically, as described above. At least among those individuals who participate in biomedical research, genetic estimates of biogeographical ancestry generally agree with self-assessed ancestry (Tang et al. 2005), but in an unknown percentage of cases, they do not (Brodwin 2002; Kaplan 2003).

Despite its seemingly objective nature, ancestry also has limitations as a way of categorizing people (Elliott and Brodwin 2002). When asked about the ancestry of their parents and grandparents, many people cannot provide accurate answers. In one series of focus groups in the state of Georgia, 40% of ∼100 respondents said they did not know one or more of their four grandparents well enough to be certain how that person(s) would identify racially (Condit et al. 2003). Misattributed paternity or adoption can separate biogeographical ancestry from socially defined ancestry. Furthermore, the exponentially increasing number of our ancestors makes ancestry a quantitative rather than qualitative trait—5 centuries (or 20 generations) ago, each person had a maximum of >1 million ancestors (Ohno 1996). To complicate matters further, recent analyses suggest that everyone living today has exactly the same set of genealogical ancestors who lived as recently as a few thousand years in the past, although we have received our genetic inheritance in different proportions from those ancestors (Rohde et al. 2004).

In the end, the terms “race,” “ethnicity,” and “ancestry” all describe just a small part of the complex web of biological and social connections that link individuals and groups to each other.

Racial, Ethnic, and Ancestral Categories in Genetics Research
The Effects of Racial and Ethnic Identities on Health

Racial and ethnic groups can exhibit substantial average differences in disease incidence, disease severity, disease progression, and response to treatment (LaVeist 2002). In the United States, African Americans have higher rates of mortality than does any other racial or ethnic group for 8 of the top 10 causes of death (Hummer et al. 2004). U.S. Latinos have higher rates of death from diabetes, liver disease, and infectious diseases than do non-Latinos (Vega and Amaro 1994). Native Americans suffer from higher rates of diabetes, tuberculosis, pneumonia, influenza, and alcoholism than does the rest of the U.S. population (Mahoney and Michalek 1998). European Americans die more often from heart disease and cancer than do Native Americans, Asian Americans, or Hispanics (Hummer et al. 2004).

Considerable evidence indicates that the racial and ethnic health disparities observed in the United States arise mostly through the effects of discrimination, differences in treatment, poverty, lack of access to health care, health-related behaviors, racism, stress, and other socially mediated forces. The infant mortality rate for African Americans is approximately twice the rate for European Americans, but, in a study that looked at members of these two groups who belonged to the military and received care through the same medical system, their infant mortality rates were essentially equivalent (Rawlings and Weir 1992). Recent immigrants to the United States from Mexico have better indicators on some measures of health than do Mexican Americans who are more assimilated into American culture (Franzini et al. 2001). Diabetes and obesity are more common among Native Americans living on U.S. reservations than among those living outside reservations (Cooper et al. 1997). Rates of heart disease among African Americans are associated with the segregation patterns in the neighborhoods where they live (Fang et al. 1998). Furthermore, the risks for many diseases are elevated for socially, economically, and politically disadvantaged groups in the United States, suggesting that socioeconomic inequities are the root causes of most of the differences (Cooper et al. 2003; Cooper 2004).

However, differences in allele frequencies certainly contribute to group differences in the incidence of some monogenic diseases, and they may contribute to differences in the incidence of some common diseases (Risch et al. 2002; Burchard et al. 2003; Tate and Goldstein 2004). For the monogenic diseases, the frequency of causative alleles usually correlates best with ancestry, whether familial (for example, Ellis–van Creveld syndrome among the Pennsylvania Amish), ethnic (Tay-Sachs disease among Ashkenazi Jewish populations), or geographical (hemoglobinopathies among people with ancestors who lived in malarial regions). To the extent that ancestry corresponds with racial or ethnic groups or subgroups, the incidence of monogenic diseases can differ between groups categorized by race or ethnicity, and health-care professionals typically take these patterns into account in making diagnoses.

Even with common diseases involving numerous genetic variants and environmental factors, investigators point to evidence suggesting the involvement of differentially distributed alleles with small to moderate effects. Frequently cited examples include hypertension (Douglas et al. 1996), diabetes (Gower et al. 2003), obesity (Fernandez et al. 2003), and prostate cancer (Platz et al. 2000). However, in none of these cases has allelic variation in a susceptibility gene been shown to account for a significant fraction of the difference in disease prevalence among groups, and the role of genetic factors in generating these differences remains uncertain (Mountain and Risch 2004).

The Allelic Architecture of Disease

The genetic architecture of common diseases is an important factor in determining the extent to which patterns of genetic variation influence group differences in health outcomes (Reich and Lander 2001; Pritchard and Cox 2002; Smith and Lusis 2002). According to the common disease/common variant hypothesis, common variants present in the ancestral population before the dispersal of modern humans from Africa play an important role in human diseases (Goldstein and Chikhi 2002). Genetic variants associated with Alzheimer disease, deep venous thrombosis, Crohn disease, and type 2 diabetes appear to adhere to this model (Lohmueller et al. 2003). However, the generality of the model has not yet been established and, in some cases, is in doubt (Weiss and Terwilliger 2000; Pritchard and Cox 2002; Cardon and Abecasis 2003). Some diseases, such as many common cancers, appear not to be well described by the common disease/common variant model (Kittles and Weiss 2003; Wiencke 2004).

Another possibility is that common diseases arise in part through the action of combinations of variants that are individually rare (Pritchard 2001; Cohen et al. 2004). Most of the disease-associated alleles discovered to date have been rare, and rare variants are more likely than common variants to be differentially distributed among groups distinguished by ancestry (Risch et al. 2002; Kittles and Weiss 2003). However, groups could harbor different, though perhaps overlapping, sets of rare variants, which would reduce contrasts between groups in the incidence of the disease.

The number of variants contributing to a disease and the interactions among those variants also could influence the distribution of diseases among groups. The difficulty that has been encountered in finding contributory alleles for complex diseases and in replicating positive associations suggests that many complex diseases involve numerous variants rather than a moderate number of alleles, and the influence of any given variant may depend in critical ways on the genetic and environmental background (Risch 2000; Weiss and Terwilliger 2000; Altmüller et al. 2001; Hirschhorn et al. 2002). If many alleles are required to increase susceptibility to a disease, the odds are low that the necessary combination of alleles would become concentrated in a particular group purely through drift (Cooper 2004).

Population Substructure in Genetics Research

One area in which racial and ethnic categories can be important considerations in genetics research is in controlling for confounding between population substructure, environmental exposures, and health outcomes. Association studies can produce spurious results if cases and controls have differing allele frequencies for genes that are not related to the disease being studied (Cardon and Palmer 2003; Marchini et al. 2004), although the magnitude of this problem in genetic association studies is subject to debate (Thomas and Witte 2002; Wacholder et al. 2002). Various methods have been developed to detect and account for population substructure (Morton and Collins 1998; Hoggart et al. 2003), but these methods can be difficult to apply in practice (Freedman et al. 2004).

Population substructure also can be used to advantage in genetic association studies. For example, populations that represent recent mixtures of geographically separated ancestral groups can exhibit longer-range linkage disequilibrium between susceptibility alleles and genetic markers than is the case for other populations (Hoggart et al. 2004; Patterson et al. 2004; Smith et al. 2004; McKeigue 2005). Genetic studies can use this admixture linkage disequilibrium to search for disease alleles with fewer markers than would be needed otherwise. Association studies also can take advantage of the contrasting experiences of racial or ethnic groups, including migrant groups, to search for interactions between particular alleles and environmental factors that might influence health (Chaturvedi 2001; Collins et al. 2003).

Conclusions
When deciding whether and how to use racial, ethnic, and ancestral categories in research, geneticists face conflicting demands. On the one hand, many observers have made powerful arguments in favor of reducing or even eliminating the use of racial or ethnic categories in genetics research (Fullilove 1998; Goodman 2000; Lee et al. 2001; Braun 2002; Duster 2003, 2005; Stevens 2003; Kahn 2004; Sankar et al. 2004; Ossorio and Duster 2005). These observers point out that the use of these categories reinforces the widespread impression that health inequities arise through the action of genetic differences and independent of socially mediated mechanisms. In this way, genetics research that involves making population comparisons can inaccurately stereotype racial and ethnic groups, both by implying that such groups are clearly delineated and by associating health outcomes with all individuals in those groups rather than with only those individuals who exhibit the outcome. Furthermore, according to critics, an overemphasis on the genetic component of health differences shifts attention and resources away from established contributors to health disparities—in particular, the differences in treatment and socioeconomic disadvantages that disproportionately affect minority groups (Sankar et al. 2004). Genetics research offers no evidence that any one group is superior or inferior to any other, although some individuals continue to try to distort genetic findings to buttress prejudiced outlooks. Biomedical research that accentuates genetic differences among groups, say critics of this research, is as conceptually flawed as the race science of the 19th century (Bhopal 1997).

On the other hand, race and ethnicity are such prominent aspects of many societies that it is difficult, and often inadvisable, to ignore them in genetics research. The members of these groups can have widely disparate economic, social, and psychological experiences and can be exposed to very different environments as a consequence of their membership in a particular group. These differential experiences and environmental exposures can be used to investigate the biological mechanisms that contribute to health disparities among groups (LaVeist 1996). In addition, self-identified race, ethnicity, or ancestry can provide measures of population substructure that help avoid false-positive results in association studies.

One way for geneticists to ease the dilemma they face is to try to move beyond racial, ethnic, or ancestral categories in their work (Ota Wang and Sue 2005; Shields et al. 2005). Rather than using racial, ethnic, or ancestral labels as proxies for much more detailed social, economic, environmental, biological, or genetic factors, researchers can try to measure these factors directly. For example, controlling for socioeconomic status by use of census tract data can substantially reduce the excess mortality risk observed in disadvantaged minority populations (Krieger et al. 2005). Similarly, genotyping to estimate biogeographical ancestry can be a better control for population substructure than self-identified race, ethnicity, or ancestry (Shields et al. 2005).

When the use of racial or ethnic categories in research is deemed necessary, researchers can avoid overgeneralization by using labels that are as specific as possible. Today many genetic investigations label populations with the same loose terms used by the public (Sankar and Cho 2002; Clayton 2003; Collins 2004; Comstock et al. 2004). But labels such as “Hispanic,” “Black,” “Mexican American,” “White,” “Asian,” “European,” or “African” can have ambiguous or contradictory meanings among researchers, research subjects, and the general public. Use of such broad labels without careful definitions can impair scientific understanding and imply that distinctions between socially defined populations are genetically well established. Genetics researchers often rely on the categories specified in the U.S. census—encouraged by regulations that urge diversity of study populations—but these categories are used today mainly for administrative and social purposes and were not designed for genetics research. Even when the census categories are used to select research subjects to ensure diversity, researchers can analyze their results using more-specific labels that are closely tied to the scientific questions being asked (Kaplan and Bennett 2003). For example, labels based on biogeographical ancestry may be suited for many genetics studies, socially based labels may be more appropriate for health disparities and clinical research, and both types of information may be valuable for studies of some gene-environment interactions.

Individuals can be assigned to specific population categories in a number of ways, with the most appropriate way, again, depending on the research question being investigated (Foster and Sharp 2004; International HapMap Consortium 2004). Research subjects can be asked to identify themselves with geographical or cultural populations, which may be defined by the researcher or by the local communities within which the research is being conducted. Communities and researchers can choose categories together through a consultative or engagement process between researchers and the community (Foster et al. 1999; Condit et al. 2002). Categorical systems also can include the possibility of simultaneous, multiple-group memberships in groups at higher or lower levels of organization.

A number of journals, including Nature Genetics (Anonymous 2000), Archives of Pediatrics & Adolescent Medicine (Rivara and Finberg 2001), and the British Medical Journal (Anonymous 1996), have separately issued guidelines stating that researchers should carefully define the terms they use for populations, and some journals have asked researchers to justify their use of racial or ethnic groups in research. But enforcement of these guidelines has been uneven, and compliance will continue to be spotty without greater awareness among researchers of the difficulties and risks involved in defining populations (Sankar and Cho 2002; Anonymous 2004).

Efforts to move past the use of racial and ethnic categories in genetics research often will require consideration of a very broad range of additional variables (Chakravarti and Little 2003). These variables will differ from study to study, but even a partial list includes racism and discrimination, socioeconomic status, social class, personal or family wealth, environmental exposures, insurance status, age, diet and nutrition, health beliefs and practices, educational level, language spoken, religion, tribal affiliation, country of birth, parents’ country of birth, length of time in the country of residence, and place of residence along with genetic variation (Kaplan and Bennett 2003). Research that successfully integrates such a wide range of variables will require the collaboration of individuals with many different disciplinary backgrounds (Bonham et al. 2005).

A particular challenge for interdisciplinary teams will be designing their studies and reporting their results in ways that convey to the public the complexities of biological systems (Weiss 1998; Clark 2002; Chakravarti and Little 2003). Within the highly interconnected network of factors involved in complex diseases, the influence of any given allele likely will depend on past and current biological and environmental contexts, which often will make it difficult to demonstrate that a given variant directly “causes” a particular condition (Weatherall 1999; Page et al. 2003). Growing appreciation of the ways in which gestational influences (Sallout and Walker 2003), childhood illnesses (Gluckman and Hanson 2004), obesity (Calle and Kaaks 2004), exposure to toxins (Whyatt et al. 2004), stress (Wallace et al. 2004), and other factors influence later illnesses highlights the multiple interconnections among biological mechanisms, environmental influences, and chance events (Shostak 2003).

Despite this complexity, genetics researchers have a unique opportunity to reduce at least some of the confusion and controversy surrounding the issues of race, ethnicity, ancestry, and health. They can demonstrate the irrelevance of racial and ethnic labels for pursuing many research questions and health improvement objectives—for example, by clarifying the many ways in which environmental factors that extend across groups interact with biological processes to produce common diseases (Lin and Kelsey 2000; Rotimi 2004). By emphasizing the close genetic affinities between members of different groups, researchers can reduce the widespread misconception that substantial genetic differences separate groups (Wilson et al. 2001; Olson 2002; Jorde and Wooding 2004). As the complex origins of human traits, behaviors, and diseases slowly are unraveled, how genetics research is conducted could influence whether racial and ethnic discrimination increases or decreases over time.

fonte
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
o chato nisto é que há muito material que só a pagantes...

L
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
Changing the paradigm from 'race' to human genome variation

Knowledge from the Human Genome Project and research on human genome variation increasingly challenges the applicability of the term 'race' to human population groups, raising questions about the validity of inferences made about 'race' in the biomedical and scientific literature. Despite the acknowledged contradictions in contemporary science, population-based genetic variation is continually used to explain differences in health between 'racial' and 'ethnic' groups. In this commentary we posit that resolution of apparent paradoxes in relating biology to 'race' and genetics requires thinking 'outside of the box'.

Introduction to the state of the science
Knowledge gained from the Human Genome Project and research on human genome variation is forcing a paradigm shift in thinking about the construct of 'race'1, 2, 3, 4, 5, 6, 7, 8, much like the process described by Thomas Kuhn in his renowned book, The Structure of Scientific Revolutions9. Kuhn describes the paradigm shift in science as occurring when anomalous, scientific results cannot be explained by inadequate methods. With an accumulation of such anomalies, scientists must begin to consider that the paradigm or model of reality under which the hypotheses are tested has shifted and is no longer valid. Today, scientists are faced with this situation in genomics, where existing biological models or paradigms of 'racial' and 'ethnic' categorizations cannot accommodate the uniqueness of the individual and universality of humankind that is evident in new knowledge emerging from human genome sequence variation research and molecular anthropological research. The paradigms of human identity based on 'races' as biological constructs are being questioned in light of the preponderance of data on human genome sequence variation10, 11, 12, 13 and reflect the need for a new explanatory framework and vision of humankind with different fundamental assumptions about biological groups that can accommodate new knowledge from a new generation of research.

Discourse on the validity of 'racial' categorization in humans is certainly not new and will perhaps continue for generations to come, taking on various forms as new scientific and nonscientific knowledge emerges. Shifts have occurred over time from a purely anthropological or biological debate14, 15, 16, 17, 18, 19, 20, 21 to conversations about numerous psychosocial, societal, ethical and legal ramifications22, 23, 24, 25, indicative of the undeniable applicability of the topic of 'race' to virtually every aspect of human existence.

This commentary describes the intellectual climate under which new information from human genome research is introduced into twenty-first-century biomedical science and society, new information that forces a more integrative construct of human biology and disease. The discordance between 'race' and human genome variation sets the stage for an analysis of the state of the science on human genome variation and 'race' and the relationship between genome variation and population differences in health and disease. The paper also provides a brief background for, and overview of, this Supplement to Nature Genetics.

Genetics research and health disparities
Recent studies by leading human genome researchers report differences between African and non-African population groups in the structure of sequence variation in the human genome26, 28, rekindling in the scientific literature, as well as in the public media, old controversies over the biological relevance of 'race' in medicine. Human genome−based knowledge challenges science and society to address questions on the validity of 'racial' or 'ethnic' categories for biomedical and genetics research. It also raises questions on the public health importance of human genome variation within and between different racial or ethnic groups, thus making it relevant to the categorization of human identity in health disparities research, training and community partnership.

Research focusing on health disparities with respect to common complex diseases (such as diabetes, cardiovascular disease, and some cancers) in 'racial' or 'ethnic' groups has highlighted almost exclusively social, cultural, environmental and economic causal factors while disregarding potential genetic factors. This may be attributed to several causes, ranging from a general perception that genetics plays a minimal role, to the limitations of technology prior to the human genome project in studying the genetics of common complex diseases. The introduction of human genome technology into investigations of health disparities is controversial and demands critical examination28, 29.

Human genome knowledge has been likened to a "double-edged sword"28, 29, with power to exacerbate health disparities if (i) its benefits are realized only by the most affluent members of society; (ii) its research is carried out and applied mainly toward the medical treatment of rare diseases; (iii) its message is distorted into impressions of group inferiority; (iv) its information is used to discriminate and stigmatize; and (v) its power is used to further the image of a single physical ideal. Conversely, and in line with the position of the National Human Genome Center (NHGC), this same knowledge can be effectively used to eliminate health disparities if (i) its applications are focused on common complex diseases in the least healthy groups in society; (ii) its study provides valuable insights into the causes of health disparities; (iii) its benefits are shared with vulnerable population groups; and (iv) its message is understood as valuing human variation as an instrument of self-discovery30.

Translational genomics at the NHGC
With a mission to "explore the science of and teach the knowledge about DNA sequence variation and its interaction with the environment in the causality, prevention, and treatment of diseases common in African Americans and other African Diaspora populations", the NHGC at Howard University was formally announced on 1 May 2001 and dedicated to the engagement of African Americans and other people of African ancestry into the mainstream of human genome research. As the only research center of its kind in a historically black academic center, the NHGC is thought to be crucial to broadening the base and active participation of African Americans and other grossly under-represented African Diaspora populations in the human genome arena. With a structure that includes genetic epidemiology, molecular genetics, bioethics, statistical genetics and bioinformatics, the NHGC was formed to address the biomedical, ethical, legal and social issues raised by the wealth of knowledge unleashed by the sequencing of the human genome.

As previously indicated, much of the current literature on genetics and health disparities emphasizes the potential dangers of connecting genetics with disparities, and relatively little research has been directed towards the potential of genomics to further understand health disparities in ways that can accomplish the US public health objectives of Healthy People 2010: a long and healthy life for all and the elimination of health disparities28, 29. Conditions are prime for the application of knowledge gained from research on the structure of DNA sequence variation in African and African Diaspora populations to probe the influence of gene-environment interactions in race- and ethnicity-based health disparities. With plans underway for the Translational Genomics Research in the African Diaspora initiative, the NHGC is positioned to lead the US and the global community with a large-scale, interdisciplinary project for human genome research in the African Diaspora. Translational Genomics Research in the African Diaspora will be a population-based resource for translational genomics in clinical research, which capitalizes on the evolutionary and migration history of Africans and the African Diaspora, and a resource for dissecting the contributions of gene-environment interactions (environment broadly defined to include psychosocial, cultural and other subjective factors) to disease susceptibility and response to medicines.

The relevance of the topic 'genetics and race' to the mission of the NHGC and to improved understanding of the relationships among gene-environment interactions, complex traits and health disparities between racial or ethnic groups cannot be overstated. Critics challenge the NHGC research focus on African Americans and other African Diaspora populations. Assertions that the center perpetrates race-based science and medicine have resulted from different perspectives on population-based genetic studies. The NHGC posits that the term 'race', as applied to humans, is incorrectly used. Traditional 'racial' designations in humans are not bounded, discrete categories but are fluid, socially defined constructs that have some poorly understood correlations with various biological elements and health outcomes. It is our intent that the work of the center will increase understanding of the complex interaction of genes and environment as well as cultural and other psychosocial factors that contribute to common complex diseases.

Rationale for the NHGC meeting
In an attempt to advance the dialog among persons from various academic disciplines, professions, social strata and racial or ethnic groups, the NHGC launched a series of meetings on the conceptualization of genetic variation as 'race'. The series is intended to bring together a diverse group of individuals over time, charged with confronting the perplexing issues from various vantage points through open and scholarly dialogue and with generating tangible outcomes.

The scientific focus of the inaugural meeting in the Human Genome Variation and "Race" series is by no means arbitrary. A substantial portion of the ongoing dialog on this issue has been devoted to the glaring medical and societal implications, often glossing over the ambiguous science that underlies many of these implications. Until sound conclusions of the science are clearly communicated, society as a whole will be severely limited in its capacity to effectively address any of the ramifications. Undoubtedly, such clarity will require new approaches to methodology, training, policy and priorities. The desire of the NHGC is that the discourse initiated at the inaugural meeting and continued in this journal issue will enlighten the community about the scientific aspects of the interface between race and genetics.

Overview of this Supplement
The papers in this Supplement are Commentaries and Perspectives from selected noted scientists and scholars in the fields of biology, human genetics, anthropology, epidemiology and bioethics, all of whom were invited presenters at the Howard University Human Genome Variation and "Race" meeting. This Supplement builds on and extends the discourse on the state of the science on genetics, race and health.

Mildred Cho and Pamela Sankar set the stage by highlighting the connection between genetics research and the ethical, legal and social implications of the inevitable scientific outcomes. They argue for the involvement of genetics researchers not only in the generation of knowledge about human genome in general and genetic variation research in particular, but also in the use and application of that knowledge, especially nonmedical uses such as forensic genetics.

Francis Collins, director of the National Human Genome Research Institute at the US National Institutes of Health, provides a general overview of, and model for, contextualizing existing knowledge about the interactions among race, ethnicity, genetics and health. He also proposes an agenda for additional research that is needed to advance understanding and application of these interactions and describes related efforts supported or led by the National Human Genome Research Institute.

The paper by Shomarka Keita and colleagues at the NHGC uses a historical framework in putting forward the NHGC's position on the meaning and application of the term 'race'. The primary assertion by these authors is that biological variation in modern humans does not structure into phylogenetic subspecies ('races'). In addition, they point out that the controversies engendered by the term 'race' result primarily from problems with semantics due to inconsistency in the use and definition of the word.

In addressing the issue of whether populations cluster according to the popular concept of race, Sarah Tishkoff and Kenneth Kidd show that racial classifications do not adequately describe the distribution of genetic variation in humans. While acknowledging the clustering of populations in broad geographic regions, they contend that the broad global pattern is indicative of genetic drift associated with the African origin, followed by expansion out of Africa and across the rest of the globe. They further suggest that biomedical studies can benefit from knowledge of individual ancestry, as various factors may lead to geographical restriction of disease-associated genes.

The perspective by Lynn Jorde and Stephen Wooding emphasizes the geographic configuration of genetic variation in line with historical patterns of gene flow and genetic drift. The authors show that the distribution of genetic variation across populations is continuous and overlapping, and that observed correlations with some traditional concepts of race are limited. They also provide a general overview of patterns of human variation at the population and individual levels. They caution that although ancestry (or 'race') may prove useful in biomedicine, more accurate and beneficial information may be obtained through direct assessment of disease-related genetic variation.

Sarah Tate and David Goldstein examine the potential for pharmacogenetics to exacerbate disparities in both health and health care if measures are not instituted to ensure that the development and dispensing of medicines are inclusive. Accordingly, they call for pharmacogenetic research processes that take into account the range of ethnic and genetic diversity within and between human populations, as well as for increased participation of healthy volunteers in such studies.

Charles Rotimi presents an insider's view of the present and potential challenges related to the retention and use of racial, ethnic or population identifiers in large-scale genomic projects, such as the International Human Haplotype Map (HapMap) project. He reiterates the general consensus that racial classifications are imprecise and fluid, often correlating spuriously with genetic variation across populations. Consequently, he advocates more careful consideration of the scientific, clinical, social and ethical ramifications inherent in the design and implementation of 'race-based' population studies and the development of 'race-based' pharmacogenomic interventions.

In their assessment of scientific data on human genotypic and phenotypic variation generated over the last 35 years, Joanna Mountain and Neil Risch found that despite technological advances resulting in a large volume of new data, progress has been relatively slow towards elucidation of the genetic basis for within- or between-group variation, particularly for complex traits and common diseases. They attribute this to intrinsic difficulty in teasing out the associated genetic influences, as well as to the important role of nongenetic factors. They conclude that given the ongoing challenges in understanding on the role of genes in between-group variation, generalizations regarding genetic contributions to observed differences are unwarranted and may exacerbate group disparities.

Esteban Parra, Rick Kittles and Mark Shriver present results of their study designed to evaluate correlations between skin pigmentation and ancestry. They observed substantial but variable strengths of correlation between pigmentation and ancestry in each of the five populations studied, attributing their observations to varying degrees of admixture stratification among populations or differences in the levels of pigmentation between the parental populations and the number of genes involved. They recommend caution when using pigmentation as a 'marker' of ancestry or when extrapolating the results from on population to other admixed populations.

Conclusion
Reflecting on this compilation of articles from the distinguished group of scientists invited to contribute to this special issue of Nature Genetics, it is evident that much effort has already been expended in attempting to achieve clarity on the complex relationships among race, genetics and health. Based on information presented here, there seems to be consensus that 'race', whether imposed or self-identified, is a weak surrogate for various genetic and nongenetic factors in correlations with health status. We are at the beginning of a new era in molecular medicine. It remains to be determined how increasing knowledge of genetic variation in populations will change prevailing paradigms of human health and identity.

fonte

e pronto. basicamente é isto.

L


Geneticamente deve ser possível definir grupos mais exactos do que com conceitos latos de raça. Mas vai existir alguma correspondência nesses grupos simplesmente porque o conceito de raça funciona em muitos casos.

Mas essa é a aproximação correcta: não é atirar uma classificação fora sem substituto, é criar um substituto melhor -- que é passível de acontecer com tal classificação de base genética.
"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
desculpem lá os lençóis, mas não há artigos pequenos.
este último penso que remata aquilo que eu quis transmitir.

a genética mais recente 'chocou' contra o conceito de raça. o conceito de raça só atrapalha à luz das descobertas mais recentes sobre o genoma humano.
todos os autores pisam devagarinho (pelos vistos isto é um tema super sensível) mas são muito claros.
não há evidência científica nenhuma que sustente o conceito de raça. antes pelo contrário. o conceito de raça só atrapalha e confunde.
mesmo os cientistas têm biases. podem não se revelar no estudo em si mas sim na amostra ou no método tomado.
esses biases têm um efeito nefasto no esclarecimento científico.

por isso tantos artigos a 'muito polidamente' (vá-se lá saber porquê - que calos é que estão a evitar pisar) refutar o conceito pernicioso - a todos os níveis: social e científico - de raça.

L
« Última modificação: 2015-09-08 01:41:56 por Lark »
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
este artigo irrita-me solenemente. é só USD 11.95. mas raios, porquê pagar por ciência?


ADD TO CART

$11.95

Intelligence, race, and genetics.
By Sternberg, Robert J.; Grigorenko, Elena L.; Kidd, Kenneth K.
American Psychologist, Vol 60(1), Jan 2005, 46-59.
Abstract
In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They further argue that race is a social construction with no scientific definition. Thus, studies of the relationship between race and other constructs may serve social ends but cannot serve scientific ends. No gene has yet been conclusively linked to intelligence, so attempts to provide a compelling genetic link of race to intelligence are not feasible at this time. The authors also show that heritability, a behaviorgenetic concept, is inadequate in regard to providing such a link. (PsycINFO Database Record (c) 2013 APA, all rights reserved)


foi isto que matou o Aaron Swartz, coitado.
percebo-o perfeitamente.

L
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
desculpem lá os lençóis, mas não há artigos pequenos.
este último penso que remata aquilo que eu quis transmitir.

a genética mais recente 'chocou' contra o conceito de raça. o conceito de raça só atrapalha à luz das descobertas mais recentes sobre o genoma humano.
todos os autores pisam devagarinho (pelos vistos isto é um tema super sensível) mas são muito claros.
não há evidência científica nenhuma que sustente o conceito de raça. antes pelo contrário. o conceito de raça só atrapalha e confunde.
mesmo os cientistas têm biases. podem não se revelar no estudo em si mas sim na amostra ou no método tomado.
esses biases têm um efeito nefasto no esclarecimento científico.

por isso tantos artigos a 'muito polidamente' (vá-se lá saber porquê - que calos é que estão a evitar pisar) refutar o conceito pernicioso - a todos os níveis: social e científico - de raça.

L

Não, isso é na tua cabeça. O conceito de raça FUNCIONA. Mas, é um conceito antigo e defeituoso face ao que deverá ser possível fazer hoje. Hoje podem criar-se grupos directamente com base nos dados genéticos. E esses grupos vão ser mais exactos do que uma "raça". A raça "não incomoda", simplesmente deve ser possível suplantá-la. Mas também deve existir alguma sobreposição, porque senão a  raça não funcionava. È como Newton, a relatividade de Einstein tem uma boa sobreposição, porque senão Newton não funcionava.

De resto isto não altera os estudos sobre inteligência. Simplesmente quando existirem outros tipos de grupos, irão existir correlações ainda mais apertadas.

--------

Sobre o "conceito pernicioso", talvez não te tenhas dado conta que os grupos "raça" irão ser substituídos por outros grupos, definidos de forma ligeiramente diferente, com base directamente na genética. As subdivisões não vão desaparecer, porque funcionam, só vão ficar mais exactas.
« Última modificação: 2015-09-08 01:53:53 por Incognitus »
"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
desculpem lá os lençóis, mas não há artigos pequenos.
este último penso que remata aquilo que eu quis transmitir.

a genética mais recente 'chocou' contra o conceito de raça. o conceito de raça só atrapalha à luz das descobertas mais recentes sobre o genoma humano.
todos os autores pisam devagarinho (pelos vistos isto é um tema super sensível) mas são muito claros.
não há evidência científica nenhuma que sustente o conceito de raça. antes pelo contrário. o conceito de raça só atrapalha e confunde.
mesmo os cientistas têm biases. podem não se revelar no estudo em si mas sim na amostra ou no método tomado.
esses biases têm um efeito nefasto no esclarecimento científico.

por isso tantos artigos a 'muito polidamente' (vá-se lá saber porquê - que calos é que estão a evitar pisar) refutar o conceito pernicioso - a todos os níveis: social e científico - de raça.

L

Não, isso é na tua cabeça. O conceito de raça FUNCIONA. Mas, é um conceito antigo e defeituoso face ao que deverá ser possível fazer hoje. Hoje podem criar-se grupos directamente com base nos dados genéticos. E esses grupos vão ser mais exactos do que uma "raça". A raça "não incomoda", simplesmente deve ser possível suplantá-la. Mas também deve existir alguma sobreposição, porque senão a  raça não funcionava. È como Newton, a relatividade de Einstein tem uma boa sobreposição, porque senão Newton não funcionava.

De resto isto não altera os estudos sobre inteligência. Simplesmente quando existirem outros tipos de grupos, irão existir correlações ainda mais apertadas.

na minha cabeça e na de todos os cientistas.

se tiveres paciência tens aqui um manancial

há muita coisa a pagar mas também há muita coisa free.

L

« Última modificação: 2015-09-08 01:56:24 por Lark »
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Incognitus

  • Administrator
  • Hero Member
  • *****
  • Mensagens: 30971
    • Ver Perfil
O que eu digo que está só na tua cabeça é o "o conceito de raça só atrapalha".

Isso não faz sentido. Não atrapalha nem deixa de atrapalhar, é uma classificação. E como é antiga e defeituosa, é fácil substituí-la por uma classificação melhor e mais objectiva, obtida geneticamente.

Mas não deixará de ser uma classificação, apenas melhor, o que faz com que o outro conceito anteriormente útil (a raça) perca o seu lugar.
« Última modificação: 2015-09-08 02:00:31 por Incognitus »
"Nem tudo o que pode ser contado conta, e nem tudo o que conta pode ser contado.", Albert Einstein

Incognitus, www.thinkfn.com

Zel

  • Visitante
usando o genoma os gajos ate conseguem dizer com 90% de certeza a regiao da tua origem para uma distancia de apenas 700km
nada mau para um conceito que nao existe em ciencia e so atrapalha, haha

http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html
« Última modificação: 2015-09-08 02:03:12 por Neo-Liberal »

Zel

  • Visitante
so nao entendo porque eh que em tantos estudos usam separacoes por racas e se obtem resultados estatisticamente diferenciados
alguem explica? deve ser magia negra.  :D

o lark tem de ir ajudar a industria farmaceutica e impedir estes estudos racistas
« Última modificação: 2015-09-08 02:05:17 por Neo-Liberal »

Zel

  • Visitante
um estudo para o urso do thinkfn, com raca e tudo no titulo :D

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139378/
Categorization of humans in biomedical research: genes, race and disease

A debate has arisen regarding the validity of racial/ethnic categories for biomedical and genetic research. Some claim 'no biological basis for race' while others advocate a 'race-neutral' approach, using genetic clustering rather than self-identified ethnicity for human genetic categorization. We provide an epidemiologic perspective on the issue of human categorization in biomedical and genetic research that strongly supports the continued use of self-identified race and ethnicity.

haha  :D
« Última modificação: 2015-09-08 02:21:44 por Neo-Liberal »

Lark

  • Ordem dos Especialistas
  • Hero Member
  • *****
  • Mensagens: 4629
    • Ver Perfil
um estudo para o urso do thinkfn, com raca e tudo no titulo (pensei que nao existia, haah) :D

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139378/
Categorization of humans in biomedical research: genes, race and disease

A debate has arisen regarding the validity of racial/ethnic categories for biomedical and genetic research. Some claim 'no biological basis for race' while others advocate a 'race-neutral' approach, using genetic clustering rather than self-identified ethnicity for human genetic categorization. We provide an epidemiologic perspective on the issue of human categorization in biomedical and genetic research that strongly supports the continued use of self-identified race and ethnicity.

haha  :D


viste-te  à rasca para encontrar um hein?
quantos é que leste e ignoraste porque não satisfaziam o teu bias? confessa...

L
Be Kind; Everyone You Meet is Fighting a Battle.
Ian Mclaren
------------------------------
If you have more than you need, build a longer table rather than a taller fence.
l6l803399
-------------------------------------------
So, first of all, let me assert my firm belief that the only thing we have to fear is...fear itself — nameless, unreasoning, unjustified terror which paralyzes needed efforts to convert retreat into advance.
Franklin D. Roosevelt

Zel

  • Visitante
ate os mongos do NYT sabem mais sobre isto que o lark

http://www.nytimes.com/2002/12/20/health/20GENE.html
Gene Study Identifies 5 Main Human Populations

isto ja eh de 2002, este lark esta mesmo desligado da ciencia moderna
lark, le o NYT (nao eh so krugman, sabias?)

outro para ti, urso
http://www.nytimes.com/2007/06/26/science/26human.html?pagewanted=all
Humans Have Spread Globally, and Evolved Locally

Zel

  • Visitante
um estudo para o urso do thinkfn, com raca e tudo no titulo (pensei que nao existia, haah) :D

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC139378/
Categorization of humans in biomedical research: genes, race and disease

A debate has arisen regarding the validity of racial/ethnic categories for biomedical and genetic research. Some claim 'no biological basis for race' while others advocate a 'race-neutral' approach, using genetic clustering rather than self-identified ethnicity for human genetic categorization. We provide an epidemiologic perspective on the issue of human categorization in biomedical and genetic research that strongly supports the continued use of self-identified race and ethnicity.

haha  :D


viste-te  à rasca para encontrar um hein?
quantos é que leste e ignoraste porque não satisfaziam o teu bias? confessa...

L


ja aqui meti uns 4 com raca no titulo, como sempre aldrabas quando te encontras encurralado
afinal de contas so querias um, nao? admites o teu erro?
« Última modificação: 2015-09-08 02:22:43 por Neo-Liberal »